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Motivation

The Szeged Dolomite Formation is the most common Triassic basement formation
in the southern part of the Pannonian Basin in Hungary. This succession serves as
good hydrocarbon reservoir in numerous cases and provides significant

hydrocarbon production in this region. Nonetheless, the Szeged Dolomite reservoir
rocks have not been investigated since early 90s.

This study was performed on 60 core samples representing 25 wells in the Szeged
Basin.
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Middle Triassic shallow marine
siliciclastic and carbonate formations

Basement formations of the Szeged Basin (Haas et al. 2010, modified)



Materials
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Samples were collected from fractured and tectonically altered Middle Triassic dolostones, from reworked
dolomite pebbles in the overlaying Miocene conglomerate, and from dolomite veins in the underlaying sandstone
and metamorphites.



Methods

Macroscopic description A%
(60 samples from 25 wells) |

Microscopic petrography —
(50 samples, ~90 thin sections)

Fluorescence microscopy
Cathodoluminescence microscopy ~—

Stable isotope (80 and '3C) geochemistry
(123 fabric-selected powdered samples)

Radiogenic (87Sr/88Sr) isotope ratios

(20 samples) / V.&

Fluid inclusion microthermometry
(20 samples, ~550 fluid inclusions)
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Raman microspectroscopy on fluid
inclusions

..................................

Hydrogen isotope composition of fluid
inclusion-hosted H,O
(11 samples)




Paragenetic sequence
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Depos IC processes




Secondary porosity due to Late Cretaceous leaching and recrystallization




Late Cretaceous veins and vugs cemented by saddle dolomite

(After Davies and Smith 2006)
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Neogene fractures and cements




Carbon and oxygen isotopes
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A cross-plot of 8'3C against 6'80 for different dolomites in the Szeged Dolomite
Formation shown relative to fields of Middle Triassic marine calcite (Korte et al., 2005)
and calculated (cf. Major et al., 1992) for cogenetic marine dolomite.



87Sr/80Sr isotope ratios
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Fields depicted from the literature for the Middle Triassic marine calcite

(Korte et al., 2003, 2005)
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Hydrogen isotope composition of fluid inclusion-hosted H,O
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Note: the low and moderate salinity values paired with 60,4 data also
support the mixed meteoric and metamorphic origin of fluids



Interpreted fluid inclusion data from saddle dolomite
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Abstract

Five different Foreland Fold and Thrust Belt (FFTB) systems have been studied with the aim of reconstructing the fluid flow
history through time and to deduce the primary processes affecting reservoir units. By placing the diagenetic history into its
kinematic framework, a database is generated allowing to predict diagenetic processes in FFTBs. Particular attention is paid to
the late diagenetic processes since petrographical and geochemical data indicate that several of these processes reflect
nonequilibrium conditions with respect to their host rocks. Some of these systems involve channeled fluid flow where the
system is, to some extent, water dominated (e.g. hydrothermal karstification, MVT mineralisation, zebra dolomitization and
cooling of formation water). Other processes are less fluid prone, but here cooling of entire thrust sheets by thrusting and




Late Cretaceous syn-orogenic hydrologic system

Hydraulic head
for topography driven fluid flow

Foreland basin

[ ] Syn- and post-orogenic sediments Meteoric water

" Mesozoic sediments in general ", Mixed formation waters and hydrocarbon

B Variscan metamorphic basement '\ Metamorphic fluids

e, Secondary porosity generation along thrust faults formed by hydrothermal leaching
°e due to cooling of formation waters, and organic acids

Schematic representation of fluid sources and pathways in a carbonate dominated
fold-and-thrust belt (Based on Swennen et al. 2003 and Roure et al. 2005).



Paleogene erosion
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Formation of the recently known petroleum system during
the Neogene

| Syn- and post-orogenic sediments B Lower to Middle Miocene sediments
| Mesozoic sediments in general [_] Pannonian sediments in general

B Variscan metamorphic basement g footwall derived clastic fan

°°°:;°° Preserved secondary porosity -@- mature source rock s HC field

|dealized cross section showing the petroleum systems of the Neogene basin
fill (modified after Balazs et al. 2017, and Tari & Horvath 2006).



Concluding remarks

The main dolomitizing processes were controlled by the reflux of
mesohaline seawater and/or deep convection of seawater through the
ancient platform. These processes took place from the near surface to
shallow burial realms and, by the time the succession reached the depth
of up to 1000 meters, it was completely dolomitized and cemented.

The saddle dolomites were formed through the hydrothermal alteration
of matrix dolomite by way of invasion of metamorphogenic formational
and meteoric fluids, that were probably channeled by the Upper
Cretaceous subhorizontal overthrust zones during and immediately after
the Alpine orogeny.

The studied reservoir rocks contain significant amount of secondary
porosity that were formed by the leaching effect of the hydrothermal
fluids. These pores were partly occluded during the Paleogene—Middle
Miocene subaerial exposure but their remarkable part could have been
preserved, and currently serve as reservoir space.

Thank you for your kind attention!
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Figure 1. Generalized illustration of fluid system structure within a foreland orogenic wedge;
colors represent different fluid types and origins.
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Depth related 6’80 and T, data measured on Cd-2 dolomite

crystals
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The T,, data for the six measured Cd-2 dolomite samples fall along a line of slope
average 30-50°C/100 m which suggest an extremely increased heat-flow that could be
interpreted as a result of a relatively short-term hydrothermal overprint.

The 680 values measured from the same samples change simultaneously with the T,
data that suggests an equilibrium isotope fractionation during the precipitation.







Pervasive early diagenetic dolomitization
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‘Seawater dolomitization’ model.
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convection (e.g., Whitaker et al., 1994; Machel, 2004).




Hydrothermal alteration
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Figure 12. Schematic representation of dolomitization and subsequent hydrothermal alteration, based on petrographic observations. Precursor limestone, including cements of
phase & in the narrow fracture, was previously replaced by GMD {phase 10, Figure 4), whereas the calcite skeleton of fossil was not replaced. (A) Vertical to subvertical fracture (1)
(fracture Il, phase 12, Figure 4) cut across all previously formed diagenetic phases. Some dissolution along the fracture walls exists, resulting in irregular boundaries caused by the
introduction of a solution undersaturated with respect to dolomite. (B) The hydrothermal fluid undersaturated with respect to dolomite continues to dissolve dolomite adjacent to
the walls of the fraciure and in adjacent permeable domains. Dissolution by the hydrothermal fluid resulted in an increase in the width of the fractures and the generation of
oversized pores = vugs (2). (C) Continued dissolution brings the hydrothermal fluid fo saturation with respect to dolomite. At this stage, dissolution ceases and replacive saddle
dolomite (5) forms immediately adjacent to the fracture walls and oversized vuggy pores. At greater distances away from the conduits for the hydrothermal fluids, the original gray
matrix dolomite shows textural andfor geochemical evidence for recrystallization (4, reX GMD). Another product of the recrystallization of gray matrix dolomite is the generation of
pseudobrecdated dolomite fabrics (6). In domains where the hydrothermal fluids did not enter, there is no textural and/or geochemical evidence for recrystallization of gray matrix
dolomite (3). (D) The latest stage of hydrothermal alteration is represented by the parfial cementation of oversized pores and fractures by well-developed arystals of saddle
dolomite (7) (5D, phase 13, Figure 4).
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BOX 1.13 Two end member models of metamorphogenic ore
formation

1. Prograde metamorphogenic ore formation. Normally, metamorphic fluids are expulsed in the form of a wide and
diffuse flow into regions of lower pressure (Hanson 1997, Jamveit & Yardley 1997). Large regional tectonic structures
(shear zones, extensional faults and thrust faults) focus the diffuse flow, because they can be channels of higher
permeability (Figure 1.85). The permeability of the lower ductile crust (~10-15 km beneath the surface, depending on the
geathermal gradient) undergoing prograde metamorphism is very low with a flow of only 0.25 mfyear (Beaudoin &
Therrien 1999) and the pressure regime is lithostatic. Note, however, that even in the middle and lower crust, an interplay
between brittle and ductile deformation may occur (Mancktelow 2006). In the brittle upper crust, permeability s much
higher and flow in faults reaches T00-1000m/vear. When rising fluids enter this regime, pressure is released and
approaches hydrostatic conditions. Descending (e.g. meteoric) water can penetrate as far as the brittle/ductile boundary
iIngebritsen & Manning 1999). Because of these particular conditions, the brittle/ductile transition at ca. 425-375°Cis a
very frequent location of metamorphogenic ore deposit formation.
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system is open, the mass flow is unidirectional.

2, Retrograde metamorphogenic ore formation. Many geological observations (e.g. concerning the structural control of
orebodies) indicate that ore formation took place long after peak metamorphic conditions (or even totally unconnected to









